2020

PHYSICS

[HONOURS]

Paper: IV

Full Marks: 75

Time: 4 Hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Specify all symbols in your answer.

1. Answer any **five** questions:

 $1 \times 5 = 5$

- a) Define coefficient of viscosity of gas.
- b) State Wiedemann-Franz's law.
- State Maxwell's distribution law of velocities in a gas.
- d) State the Zeroth law of thermodynamics.
- e) What is a second order phase transition?
- f) Sketch the pressure versus volume graphs at constant temperatures of a vander Waals gas.
- g) State the Kirchhoff's law of thermal radiation.

2. Answer any **six** questions:

- a) Explain dependence of Maxwell's velocity distribution on temperature.
- b) Find the diameter of a molecule of benzene if its mean free path is 2.2×10^{-8} m and the number of benzene molecules per unit vol^m is 2.79×10^{25} molecules/m³.
- Using vander Waals equation of state, obtain the reduced equation of state.
- d) What is Boyle temperature? How is it related to critical temperature?
- e) How does the viscosity of a gas vary with pressure?
- f) Calculate the work done in isothermal expansion of an ideal gas.
- g) What is the physical significance of entropy?
- h) Explain:
 - i) Degrees of freedom
 - ii) Equipartition energy
- i) What is Joul-Thomson effect?
- j) State Planck's law of blackbody radiation. What is radiation pressure?

- 3. Answer any **three** questions: $6 \times 3 = 18$
 - a) Calculate the most probable velocity from Maxwell's velocity distribution. What is the ratio of mean velocity, root mean square velocity and most probable velocity? What is mean free path?

 3+2+1
 - b) What are the critical constants of a gas? Deduce law of corresponding state. What is diffusion in gaseous system? 2+3+1
 - c) Draw the P-V diagram of a Carnot's cycle and explain its different steps. Calculate the efficiency of a Carnot's engine. 3+3
 - d) Show that $\frac{Tds = C_v dT + T \left(\frac{\partial P}{\partial T}\right)_v dV}{Tds = C_p dT T \left(\frac{\partial P}{\partial T}\right)_v dP}$

Explain Nernst heat theorem. 2+2+2

e) State and derive Stefan-Boltzman law of radiation. Draw the curve showing the energy distribution in the spectrum of blackbody radiation.

1+4+1

4. Answer any **four** questions:

a) Show using kinetic theory of gases, that the pressure exerted by an ideal gas on the walls of its container is $P = \frac{1}{3} mn\overline{c}^2$ where m is the mass, n is the number density and \overline{c}^2 is the mean squared velocity of the gas molecules. What is Brownian motion? How do you distinguish between reversible and irreversible process.

6+2+2

b) Set up Fourier's equation for thermal conduction of a solid rod neglecting radiation loss. Solve this equation when one end is periodically heated and cooled in a simple harmonic manner in time. Distinguish between thermal conductivity and thermometric conductivity.

A refrigerator is working between the temperatures 7°C and 27°C. Calculate the maximum amount of heat that can be removed per hour if energy is supplied to the refrigerator at the rate of 250 Watts.

2+3+2+3

c) Two identical bodies of constant heat capacity at temperature T_1 and T_2 are used as reservoir for a heat engine. If the bodies remain at constant

pressure and undergo no change of phase, show that the amount of work obtainable is $W = C_v \left(T_1 + T_2 - 2 T_f \right) \text{ where } T_f \text{ is the final temperature. Show that for maximum } W,$ $T_f = \sqrt{T_1 T_2} \ .$

Show how the second law of Thermodynamics enables us to define a scale of temperature independent of the properties of any working substance.

Explain Clausius inequality. 3+4+3

d) Show that $C_p - C_v = T \left(\frac{\partial p}{\partial T} \right)_v \left(\frac{\partial V}{\partial T} \right)_p$. Show that for an isentropic transformation $\left(\frac{\partial V}{\partial T} \right)_s = \frac{C_v}{C_p - C_v} \left(\frac{\partial V}{\partial T} \right)_p$.

Write down the Kelvin-Planck and Clausius statements in context of the second law of thermodynamics. Calculate the temperature of the Sun from the following data: Radius of the Sun=7×10⁸m, Distance of the Sun from the Earth=1.5×10¹¹m, Solar constant=1.36×10³J/m/s, Stefan's constant=5.67×10³w/m²k⁴.

2+3+2+3

e) Discuss thermodynamically the equilibrium between a liquid and its vapour and hence deduce

Clapeyron's equation
$$\left(\frac{\partial P}{\partial T}\right)_{V} = \frac{L}{T(V_2 - V_1)}$$

(where the symbols have usual significance)

Show that in case of a throttling expansion Joule-Thomson coefficient can be expressed as

$$\mu = \frac{1}{C_p} \left[T \left(\frac{\partial V}{\partial T} \right)_p - V \right]$$
 State Wien's Distribution law. 5+3+2

f) Derive Cribbs-Helmholtz equation from Cribbs free energy equation. What is virial coefficient? Mention their significance in explaining the nature of the gas. Explain the principle of cooling of a system by adiabatic demagnetisation.

$$4+1+1+4$$